Min–max–min robust combinatorial optimization
نویسندگان
چکیده
منابع مشابه
Recoverable robust combinatorial optimization problems.dvi
This paper deals with two Recoverable Robust (RR) models for combinatorial optimization problems with uncertain costs. These models were originally proposed by Büsing (2012) for the shortest path problem with uncertain costs. In this paper, we generalize the RR models to a class of combinatorial optimization problems with uncertain costs and provide new positive and negative complexity results ...
متن کاملMin-max-min robust combinatorial optimization
The idea of k-adaptability in two-stage robust optimization is to calculate a fixed number k of second-stage policies here-and-now. After the actual scenario is revealed, the best of these policies is selected. This idea leads to a min-max-min problem. In this paper, we consider the case where no first stage variables exist and propose to use this approach to solve combinatorial optimization pr...
متن کاملRobust Combinatorial Optimization with Exponential Scenarios
Following the well-studied two-stage optimization framework for stochastic optimization [14, 17], we study approximation algorithms for robust two-stage optimization problems with exponential number of scenarios. Prior to this work, Dhamdhere et al. [7] introduced approximation algorithms for two-stage robust optimization problems with polynomial number of scenarios. To model exponential number...
متن کاملRobust Combinatorial Optimization under Budgeted-Ellipsoidal Uncertainty∗
In the field of robust optimization uncertain data is modeled by uncertainty sets, i.e. sets which contain all relevant outcomes of the uncertain parameters. The complexity of the related robust problem depends strongly on the shape of the uncertainty set. Two popular classes of uncertainty are budgeted uncertainty and ellipsoidal uncertainty. In this paper we introduce a new uncertainty class ...
متن کاملRobust combinatorial optimization with variable budgeted uncertainty
Abstract: We introduce a new model for robust combinatorial optimization where the uncertain parameters belong to the image of multifunctions of the problem variables. In particular, we study the variable budgeted uncertainty, an extension of the budgeted uncertainty introduced by Bertsimas and Sim. Variable budgeted uncertainty can provide the same probabilistic guarantee as the budgeted uncer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Programming
سال: 2016
ISSN: 0025-5610,1436-4646
DOI: 10.1007/s10107-016-1053-z